Synchronous Hyperedge Replacement Graph Grammars

Corey Pennycuff, Satyaki Sikdar, Catalina Vajiac, David Chiang, and Tim Weninger

Department of Computer Science and Engineering University of Notre Dame

{cpennycu,ssikdar,cvajiac,dchiang,tweninger}@nd.edu

Introduction

Discovering the underlying structures present in real world graphs is a fundamental scientific problem. We describe a method to extract growth rules from the graph. We find that SHRG rules capture growth patterns found

LHS RHS Synchronous Grammars R_S R_T $S \rightarrow NP_1 VP_2 : NP_1 VP_2$ \rightarrow V₁ NP₂ : NP₂ V₁ VP S^0 NP ightarrow i : watashi ha A_2^2 NP \rightarrow the box : hako wo e e open : akemasu \rightarrow S_1 S_1 VP_3 NP_2 VP_3 NP_2

in temporal graphs and can be used to predict the future evolution of a temporal graph.

Tree

a,c,d

Experiments

 $H^{(1)}$

Conclusion

The present work presents a method to extract synchronous grammar rules from a temporal graph. We find that the synchronous probabilistic hyperedge replacement grammar, with RHSs containing synchronized source- and target-PHRGs, is able to clearly and succinctly represent the graph dynamics found in the graph process. This allows for finding a way to predict the future growth of the graph.

Acknowledgement

We thank Chiemi Matsumoto and Peter Bui for their help with this project. This work is sponsored by grant from the US NSF IIS (16-52492).

