SOCIAL CONTAGION IN SCIENCE

S. Venturini · Satyaki Sikdar · F. Rinaldi · F. Tudisco · S. Fortunato

NetSci 2023 July 12, 2023

INTRODUCTION

SCIENTIFIC COLLABORATIONS

- Exposure to *new* tools and theories
- Facilitates the *diffusion* of ideas
- Driven by homophily and selection

INTRODUCTION

SCIENTIFIC COLLABORATIONS

- Exposure to *new* tools and theories
- Facilitates the *diffusion* of ideas
- Driven by homophily and selection

COLLABORATION NETWORKS

- Manifestations of collaborations
- A weighted undirected network

TOPIC SWITCHES

TOPIC SWITCH

The act of a scholar *a* starting to work on a *new* topic *t*

Homophily and Contagion are Generically Confounded in Observational Social Network Studies, Shalizi & Thomas, Soc. Methods & Res. (2011)

TOPIC SWITCHES

TOPIC SWITCH

The act of a scholar *a* starting to work on a *new* topic *t*

MAIN OBJECTIVE

Study the *interplay* between collaborations and topic switches

Homophily and Contagion are Generically Confounded in Observational Social Network Studies, Shalizi & Thomas, Soc. Methods & Res. (2011)

TOPIC SWITCHES

TOPIC SWITCH

The act of a scholar *a* starting to work on a *new* topic *t*

MAIN OBJECTIVE

Study the *interplay* between collaborations and topic switches

CAUSE AND EFFECT

- Can only measure effects of collaborations on topic switches
- Cannot establish any *causal* relationship between the two

Homophily and Contagion are Generically Confounded in Observational Social Network Studies, Shalizi & Thomas, Soc. Methods & Res. (2011)

Setup

Setup

METHODOLOGY

- **1** Select a topic *t*, start year T_0 , and construct IW and AW
- 2 Identify active authors A who publish on t during the IW $[T_0 5, T_0]$

SETUP

Methodology

- **1** Select a topic *t*, start year T_0 , and construct IW and AW
- 2 Identify active authors A who publish on t during the IW $[T_0 5, T_0)$
- 3 Construct *P*: papers written by *A* during IW after becoming active

SETUP

METHODOLOGY

- **1** Select a topic *t*, start year T_0 , and construct IW and AW
- 2 Identify active authors A who publish on t during the IW $[T_0 5, T_0)$
- 3 Construct P: papers written by A during IW after becoming active
- 4 Build collaboration network G using P

SETUP

Weighted degree in G wrt active neighbors a_6

 a_2 2 a_3 $a_{\scriptscriptstyle A}$

CONTACTS WITH ACTIVE AUTHORS: *k* Weighted degree in *G* wrt *active* neighbors

Weighted degree in G wrt active neighbors

CONTACTS WITH ACTIVE AUTHORS: *k* Weighted degree in *G* wrt *active* neighbors

Weighted degree in G wrt active neighbors an

Collaboration Network G

(1)

Experiment I: Membership Closure

CONTACTS WITH ACTIVE AUTHORS: *k* Weighted degree in *G* wrt *active* neighbors

MEMBERSHIP CLOSURE

Probability *a* becomes *active* in AW as a function of number of contacts, *k*

Experiment I: Membership Closure

CONTACTS WITH ACTIVE AUTHORS: *k* Weighted degree in *G* wrt *active* neighbors

Membership Closure

Probability *a* becomes *active* in AW as a function of number of contacts, *k*

TARGET ACTIVATION PROBABILITY: $C^{T}(k)$

- Fraction of *inactive* authors who become active in AW with ≥ k contacts in IW
- $C^{\mathsf{T}}(3) = \frac{1}{1} = 100\%, C^{\mathsf{T}}(1) = \frac{3}{4} = 75\%$

Experiment I: Target Activation Probability

Experiment I: Target Activation Probability

EXPERIMENT II: SOURCE ACTIVATIONS

Source Activation Probability *P*^s Fraction of *a*'s *exclusive inactive* coauthors who become *active* in AW

EXPERIMENT II: SOURCE ACTIVATIONS

SOURCE ACTIVATION PROBABILITY *P*^s Fraction of *a*'s *exclusive inactive* coauthors who become *active* in AW

Collaboration Network G $P^{s}(a_{0}) = \frac{1}{2} = 50\%$ $P^{s}(a_{1}) = NaN, P^{s}(a_{5}) = 100\%$

EXPERIMENT II: SOURCE ACTIVATIONS

Source Activation Probability *P*^s Fraction of *a*'s *exclusive inactive* coauthors who become *active* in AW

CHAPERONING PROPENSITY P^C

Fraction of *a*'s *exclusive inactive* coauthors who become *active and* write their first paper on *t* with *a* in AW

Experiment II: Cumulative Source Activations

Experiment II: Cumulative Source Activations

 a_4

EXPERIMENT II: CUMULATIVE SOURCE ACTIVATIONS

CUMULATIVE PROBABILITIES

 $C^{s}(f)$: fraction of eligible *active* authors with $P^{s} \ge f$ $C^{c}(f)$: fraction of eligible *active* authors with $P^{c} \ge f$

Prominent Authors

- Mark top 10% and bottom 10% active authors A
 - Productivity
 - Impact
- Compute differences $C_{top}^{s}(f) C_{bot}^{s}(f)$ and $C_{top}^{c}(f) C_{bot}^{c}(f)$

EXPERIMENT II: CUMULATIVE PROBABILITIES

EXPERIMENT II: DILUTION EFFECT

STRENGTH OF CONNECTIONS

• Link between source activation probability and *team sizes*

EXPERIMENT II: DILUTION EFFECT

STRENGTH OF CONNECTIONS

- Link between source activation probability and *team sizes*
- Difference between top 20% and bottom 20% of top 10% active authors

EXPERIMENT II: DILUTION EFFECT

STRENGTH OF CONNECTIONS

- Link between source activation probability and *team sizes*
- Difference between top 20% and bottom 20% of top 10% active authors

Dilution Effect

Main Findings

• A *complex* relationship between collaboration and topic switches

Main Findings

- A complex relationship between collaboration and topic switches
- Prominent authors are more likely to induce topic switches

Main Findings

- A complex relationship between collaboration and topic switches
- Prominent authors are more likely to induce topic switches
- Having too many collaborators *dilutes* the influence

Main Findings

- A *complex* relationship between collaboration and topic switches
- Prominent authors are more likely to induce topic switches
- Having too many collaborators *dilutes* the influence

FUTURE DIRECTIONS

- Incorporate institutional affiliations of authors
- Relate topic switching probability with semantic similarity
- Model higher-order diffusion effects

Sara Venturini Jniversity of Padova

arXiv:2304.06826

Francesco Rinaldi University of Padova

Francesco Tudisco Gran Sasso Science Inst.

Santo Fortunato Indiana University

Thanks! △ ssikdar@iu.edu

У @satyaki30

Торіс	# Windows	Interaction Window		Activation Window	
		# Papers	# Authors	# Papers	# Authors
Dark matter	13	6,433	8,348	9,203	12,346
Fluid dynamics	16	5,290	11,950	7,231	16,960
Mobile computing	13	6,356	13,844	6,828	15,827
Cryptography	15	9,706	15,181	14,865	25,218
Alzheimer's disease	23	9,313	22,628	11,723	31,624
Neurology	23	9,260	26,046	12,795	39,515